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Localized structures in nonlinear lattices with diffusive coupling and external driving
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We study the stabilization of localized structures by discreteness in one-dimensional lattices of diffusively
coupled nonlinear sites. We find that in an external driving field these structures may lose their stability by
either relaxing to a homogeneous state or nucleating a pair of oppositely moving fronts. The corresponding
bifurcation diagram demonstrates a cusp singularity. The obtained analytic results are in good quantitative
agreement with numerical simulations.
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The problem of dynamics in discrete nonlinear lattices Fluj]=—cosu;—E u;, 2)
arises in diverse physical, biological, and engineering sys-
tems. Among the examples are interaction of charge- andhereE is the applied external field. The field is required to
spin-density waves with impurities in correlated electron maimake the depths of the potential wells different and thus
terials[1,2], arrays of Josephson junctioh2], calcium re- allow for the propagation of fronts from less stable to more
lease waves in living cellg3], systems of coupled nonlinear stable states. For potentié®), these stable states ate
oscillators[4], etc. Of special interest are lattices witbn-  =arcsing, u, =u_+2, up=m—Uu_. The system dynam-
tinuous coupling between the nonlinear sites, because ofcs are then governed by
their rich dynamical behavior. In Ref5] such systems have
been shown to carry propagatimgirst waves The role of
localized structuress nucleation embryos in driven nonlin-
ear systems is of wide importan¢@], but the influence of
lattice discreteness amucleation and transporas received with the space and time rescaledxas x/d (d is the distance
much less attention to date. We will show in this paper thabetween sitesand t—ta, respectively. The renormalized
lattice discreteness indeed results in qualitatively differentlimensionless diffusive coupling j8=D/ad?.
phenomena. When 8>1, the system is in the continuous limit, where

Below we study the stabilization of localized structures byit is described by the overdamped sine-Gordon equatipn:
discreteness in a system consisting of a lattice of diffusively= gu,,— sinu+E. If one starts with the bulk of the system in
coupled nonlinear sites. We investigate the properties of sucihe stateu=u_, below the barrier maximumi,, and a
structures and different mechanisms of their instabilities. Weinite-size nucleus of the state=u. , above the maximum,
find a hysteresis effect in the nucleation of propagating frontshen, forE>0, there exists a critical size of the nucleus. If

ut=,8uxx+2 S(x—i)(—=sinu+E), ©)

2

from the localized structures in an external field. We obtainthe nucleus exceeds this critical size, it breaks into a pair of
our results analytically and confirm them by numerical Simu-opposite|y moving fronts; otherwise, it relaxes back to the
lations of the full system dynamics. Our system has relaxpulk state. We show that introducing discreteness into the
ational dynamics given byu/dt= — 6/ du, wheref is the  system can stabilize the critical nucleus as localized struc-
system energy functional,is the order parameter, addéu  ture.
is a variational derivative. We consider the energy functional |n the discrete regimef=<1, the system demonstrates
of the following form: substantially richer behavior. Well-separated fronts undergo
D r oy a pinning-depinning transitionfrom stationary kinks to
= _ propagating burst waves, which are periodic in a traveling-
ful= ZJ ((?x dxta Z Ayl @ wave reference framgb]. A stabilized nucleus represents a
bound pair of kink and antikink. There exists a hierarchy of
HereD is the diffusive coupling,F is the discrete nonlinear nuclei with differing numbers of sites at the state-u, ,
potential, « is the potential amplitude, and the sum is overabove the maximum. The distance between the kink and the
all lattice sitesi . We study the behavior of systefh) with antikink increases with the number of these sites, and the
bistable dynamics. The details of the potential shape are ndfinding energy rapidly decays. Since the nucleation is caused
important so long as it has at least two minimigsu_ and by local fluctuations, the physically most important nuclei
u=u, separated by a barrier with a maximuruat u,. The  are those with small numbers of sites. As the parameters
simplest example of such a potentialis a fourth degree vary, a nucleus may lose its stability. Figure 1 shows two
polynomial (¢*). Here we study the sine-Gordon potential alternative scenarios of one-site nucleus destabilizatian:
because of its applicability to modeling the dynamics ofbreaking to a pair of burst waves af) relaxation to the
charge-density wavegd]. Although this potential has an in- bulk state.
finite number of wells, for the localization problem studied The bifurcation diagram of one- and two-site nuclei along
in this paper, only two neighboring minima are relevant. Thewith a single front in the £,8) plane is shown in Fig. 2.
potential has a form The single kink is pinned below its bifurcation line and turns
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FIG. 1. Successive profiles of the numerical solutigix) of
Eqg. (3), starting from a one-site nucleu& Nucleation of two
oppositely moving burst wavek;=0.6, 3=0.13. (b) Relaxation to
the bulk statas=u_; E=0.2, 8=0.17. For both cases the system
length isL=30, the number of grid points is 300, time stdp
=2x10"°.

into a propagating burst wave above the line. Each nucleus i§0F2|G/'3 iosloslgtuon of Eq.9). (@ E=06, 5:=0.121; (b E
stable below its bifurcation line, which consists of two ~ 7' 7¢ 777

branches. Crossing the right or left branch upward results i|:|-hiS arises because, in the stationary regime (Bdpetween

the nucleation of a pair O.f burst waves or relaxatlpn to thethe sites turns into a one-dimensional Laplace equation with
bulk state,u=u_, respectively. The two branches intersect;; o~ solutions

at a_singular point, known_ as a cusp catastroptjewe see We notice that the maximum value @f on the one-site
in Fig. 2 that the nucleation of burst waves from Iocahzednucleus bifurcation line in Fig. 2, is-0.25, i.e., deep in the

nuclei demonstratesiysteresis i.e., there is a parameter discrete (small B) regime, which ends neag~1. It is,

range, where a localized nucleps IS ;tablle, while a S.'n.gl‘ﬁwerefore, natural to study the stability of the nucleus, taking
front already propagates. The bifurcation lines for multlsneB as a small parameter of the analysis

gggflolf?hkesl!?élsr'Jehsetge;igalueoat thti ?Lr;glrJ]IarrnEglrnéfon The following three sites are the key elements of our
! 9 B—0, wi u analysis: the site of the nucleuissn, and its two nearest

sites in the nucleus, due to the increasing separation of kinks. . L . R
Note that the hysteresis and the nucleation phenomena meﬁglghborSJ n+1, with the corresponding field valueg,

tioned above happen below the threshold driving strengtand Un-1. The symmetry of the nucleus implies tha. ,

R , : . =u,_,=U*. The neighboring sites are both equivalent to
Eg'ﬁ:&ﬂg%ﬁ;ﬂ? which the effective potential from Eq. the “front site” on a single kink. They are most active in a

. . . sense that they are the first candidates to cross the threshold
For any stationary solution, the dynamic equat{@nre- . . .
X - : valueuy, if the stationary solution becomes unstable. It can
duces to the following tridiagonal system of algebraic equa; : .
. , . . be shown(cf. results of Ref[5] for a single kink that the
tions foru;’s, the values ol at the sites;’s:

field value at the other sites decays with the distance from

B(U;,1+U;_;—2u;)—sinu;+ E=0. (4  the front site down tou_, as Upe—U_~BK1 (for k
=2,3,...).Consider the stability analysis to first order in
1.0 ; ; B. Then only the above-mentioned three sites make a non-

- trivial contribution to the system stability properties, which
R T, | leaves only two independent variables,andu* . Using the
..... 2—site nucl. corresponding two equations from the systetn we reduce
them to one equation for the “active” valug*

0.6 1
PO \ ] g(u*)=2B(u_—u*)—2sinu* +3E
04 \(x‘ 1 1
/,z' \\ —sin 2u* —u_+ E(sinu* —E)|=0. (5
02 o A 1
a_ﬁ.f;: ,,,,,, - AN The solution of Eq(5) is represented graphically in Fig.

0.0 il s \\‘\ 3. The case of the rightbreaking branch of the one-site
-1.0 05 0.0 0.5 10 nucleus bifurcation linésee Fig. 2 corresponds to Fig.(8).
Then below the bifurcation line, the functigfu) in Eq. (5)
FIG. 2. Numerically obtained bifurcation diagram of kink and is given by the solid line, and the equation has four solutions
one- and two-site nuclei. Parameters are as in Fig. 1. (open circles in the figule To determine the stability of
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FIG. 4. Comparison between analytical and numerical bifurca- b — B=0.1<B,
tion lines for a one-site nucleus. Parameters as in Fig. 1. 6r S i

these solutions, one has to linearize systdimand find the relaxation P
eigenvalues of the obtained linear problem. We note that the 4 g
maximum eigenvalue . is responsible for the stability of
the most active front site with=u*. This means that near
the bifurcation line only\ 5 can change sign, whereas all
other eigenvalues remain negative. To fing,,, we linear-
ize Eq.(5) and conclude that the first and the third solutions or
for u* have\ <0, while the second and the fourth solu-
tions have\ ,,,>0. The two former solutions are, therefore, 0 5 10 15
the stable nodes, and the two latter solutions are saddles with
one unstable direction in the phase space. FIG. 5. Energy€ vs arclengths near(a) break-up branch&

The first solution, however, is trivial in the sense that all =0.6) and(b) relaxation branchE=0.2) of the bifurcation line of
sites are in the bulk state=u_. This leaves the single a one-site nucleus.
nontrivial stable solutiony,,g in Fig. 3@). As B increases,
the stable solution and the right saddles u,,, approach tained phenomena of relaxation and breakup of localized nu-
each other and eventually merge @it=3.. This occurs clei. In the parameter regime below the bifurcation line, the
when the maximum of curvg(u) in Fig. 3(@) touches the energy functionall, Eq. (1), possesses a minimum in the
line g=0, atu=uc;. Since, at the critical poin8= 3., the  functional space, which corresponds to a stable nucleus.
two solutions coincide, their linear spectra become identicalSeparatrices connect this minimum to the two neighboring
and the maximum eigenvalue of the resulting spectiygy, ~ unstable solutionssaddles If one starts with an initial con-
equals zero, which implies the saddle-node bifurcation. Furdition in either of these saddles slightly perturbed in the di-
ther increase of3 leaves the system without a stationary rection of the minimum, the system evolves along the sepa-
solution, and the nucleus breaks, leading to the formation ofatrix until it relaxes at the minimum. If one parametrizes the
a pair of oppositely moving burst wavgsig. 1(a)]. position on the separatrix with an arclengihdefined as

Stability analysis of the lef(relaxation branch of the ds?’=dt?[(Ju/dt)?dx, the system dynamics take a simple
bifurcation line(see Fig. 2 can be made analogously, using gradient form,ds/dt=—d&(s)/ds.
Fig. 3(b). The difference is that now the stable solution In Fig. 5 we plot the dependence of ene@yn s from
merges with the leftrelaxation saddle,u=u,, and the numerical simulations. Figure (® shows &(s) near the
nucleus relaxes to the bulk stdteig. 1(b)]. break-up branch of the bifurcation line. We see in the figure

It appears that the first-order analysis is insufficient forthat, for the stable nucleysolid line), the energy indeed has
the quantitative comparison of our theory with numericala minimum and two neighboring maxima, corresponding to
simulations of Eq(3). To improve our predictions, we have the saddles of the dynamics. When the nucleus loses stability
developed the stability analysis to second ordeginn this  (dashed ling the minimum merges with the rigkibreak-up
case one has to consider the nucleus and two of its neighbogsiddle. Then the nucleus turns into a pair of burst waves and
from each side. Symmetry of the problem reduces the numthe energy begins monotonically decreasing. If we start with
ber of independent variables from five to three, and we deahn initial condition slightly to the right of the break-up
with three corresponding equations from systéimWe then  saddle then the system develops a pair of burst waves, even
perform the same procedure as for the first-order stabilityn the stable nucleus regime. This is the manifestation of the
analysis described above. In Fig. 4 we plot the resulting binucleation hysteresis effect, since the bound nucleus is still
furcation line for the single-site nucleus along with the re-stable in the parameter range for which a well-separated
sults of the simulations from Fig. 2. We see in Fig. 4 that ourfront already bursts and propagates. If, on the other hand, we
theoretical prediction is in good quantitative agreement withstart to the left of the relaxation saddle, then the system will
the simulations. relax to the homogeneous bulk stateu_ for both stable

We now describe the physical mechanisms of the oband unstable nuclei.

3-site nucleus
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The system behavior near the relaxation branch of th&Ve have given a theoretical description of these phenomena
bifurcation line is different, see Fig.(5). As B crosses the in terms of the energy functional of our system. The predic-
critical value, the minimum of the functional merges with the tions of our theory are in a good quantitative agreement with
left (relaxation) saddle, and the system relaxes to the homonumerical simulations of the full system. Our interesting di-
geneous bulk state. The same thing happens if we start to thections for future research: the influence of the localized
left of this saddle, for the regime of parameters where thestryctures on thermal nucleati¢6], dynamics of localized
nucleus is stable. However, if we start slightly to the right of syryctures in corresponding two- and three-dimensional sys-
the break-up saddle, then the nucleus at first starts breakingsms, experimental studies of stable and unstable nuclei in
but then relaxes to the three-site nucleus, rather than develaterials, etc. We note that, though we have studied lattices
oping info a pair of separated burst waves. . with continuous coupling, the stability analysis has been per-
. n cqnclqsmq, we ha\{e demonstrated _that nonlinear I"’}tformed for stationary localized structures from E@).
gg(retzw:)ha?;r;uestzrer((:ezlijrglel,-r;g \f)voesiisé lgﬁg\ll'vzne?hzr?ﬁég;ez’tr'nl'_herefore, the obtained stability properties of these struc-

: Ufires should remain intact for completely discrete systems,

tures can be des_troyed In_ two alternatlv_e scenar(os: such as arrays of Josephson junctipkor lattices of non-
break-up into a pair of oppositely propagating burst waves

and (ii) relaxation to a homogeneous state. We have founcqnear oscillatorg 4],

hysteresis in the burst-wave nucleation from a localized em- We appreciate fruitful discussions with D. K. Campbell
bryo, appearing as the difference between the stabilitand J. E. Pearson. This research is supported by the Depart-
thresholds of nucleus breakup and burst-wave propagatioment of Energy under Contract No. W-7405-ENG-36.
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