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Localized structures in nonlinear lattices with diffusive coupling and external driving
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~Received 23 December 1998; revised manuscript received 10 September 1999!

We study the stabilization of localized structures by discreteness in one-dimensional lattices of diffusively
coupled nonlinear sites. We find that in an external driving field these structures may lose their stability by
either relaxing to a homogeneous state or nucleating a pair of oppositely moving fronts. The corresponding
bifurcation diagram demonstrates a cusp singularity. The obtained analytic results are in good quantitative
agreement with numerical simulations.

PACS number~s!: 47.54.1r, 05.60.Cd, 47.20.Ky, 71.23.An
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The problem of dynamics in discrete nonlinear lattic
arises in diverse physical, biological, and engineering s
tems. Among the examples are interaction of charge-
spin-density waves with impurities in correlated electron m
terials @1,2#, arrays of Josephson junctions@2#, calcium re-
lease waves in living cells@3#, systems of coupled nonlinea
oscillators@4#, etc. Of special interest are lattices withcon-
tinuous coupling between the nonlinear sites, because
their rich dynamical behavior. In Ref.@5# such systems hav
been shown to carry propagatingburst waves. The role of
localized structuresas nucleation embryos in driven nonlin
ear systems is of wide importance@6#, but the influence of
lattice discreteness onnucleation and transporthas received
much less attention to date. We will show in this paper t
lattice discreteness indeed results in qualitatively differ
phenomena.

Below we study the stabilization of localized structures
discreteness in a system consisting of a lattice of diffusiv
coupled nonlinear sites. We investigate the properties of s
structures and different mechanisms of their instabilities.
find a hysteresis effect in the nucleation of propagating fro
from the localized structures in an external field. We obt
our results analytically and confirm them by numerical sim
lations of the full system dynamics. Our system has rel
ational dynamics given by]u/]t52dE/du, whereE is the
system energy functional,u is the order parameter, andd/du
is a variational derivative. We consider the energy functio
of the following form:

E@u#5
D

2 E S ]u

]xD 2

dx1a (
i

F@ui #. ~1!

HereD is the diffusive coupling,F is the discrete nonlinea
potential,a is the potential amplitude, and the sum is ov
all lattice sitesi . We study the behavior of system~1! with
bistable dynamics. The details of the potential shape are
important so long as it has at least two minima,u5u2 and
u5u1 separated by a barrier with a maximum atu5u0. The
simplest example of such a potentialF is a fourth degree
polynomial (f4). Here we study the sine-Gordon potent
because of its applicability to modeling the dynamics
charge-density waves@1#. Although this potential has an in
finite number of wells, for the localization problem studie
in this paper, only two neighboring minima are relevant. T
potential has a form
PRE 611063-651X/2000/61~2!/1106~4!/$15.00
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F@ui #52cosui2E ui , ~2!

whereE is the applied external field. The field is required
make the depths of the potential wells different and th
allow for the propagation of fronts from less stable to mo
stable states. For potential~2!, these stable states areu2

5arcsinE, u15u212p, u05p2u2 . The system dynam-
ics are then governed by

ut5buxx1(
i

d~x2 i !~2sinu1E!, ~3!

with the space and time rescaled asx→x/d (d is the distance
between sites! and t→ta, respectively. The renormalize
dimensionless diffusive coupling isb5D/ad2.

Whenb@1, the system is in the continuous limit, whe
it is described by the overdamped sine-Gordon equationut
5buxx2sinu1E. If one starts with the bulk of the system i
the stateu5u2 , below the barrier maximumu0, and a
finite-size nucleus of the stateu5u1 , above the maximum
then, forE.0, there exists a critical size of the nucleus.
the nucleus exceeds this critical size, it breaks into a pai
oppositely moving fronts; otherwise, it relaxes back to t
bulk state. We show that introducing discreteness into
system can stabilize the critical nucleus as localized str
ture.

In the discrete regime,b&1, the system demonstrate
substantially richer behavior. Well-separated fronts unde
a pinning-depinning transitionfrom stationary kinks to
propagating burst waves, which are periodic in a travelin
wave reference frame@5#. A stabilized nucleus represents
bound pair of kink and antikink. There exists a hierarchy
nuclei with differing numbers of sites at the stateu5u1 ,
above the maximum. The distance between the kink and
antikink increases with the number of these sites, and
binding energy rapidly decays. Since the nucleation is cau
by local fluctuations, the physically most important nuc
are those with small numbers of sites. As the parame
vary, a nucleus may lose its stability. Figure 1 shows t
alternative scenarios of one-site nucleus destabilization:~a!
breaking to a pair of burst waves and~b! relaxation to the
bulk state.

The bifurcation diagram of one- and two-site nuclei alo
with a single front in the (E ,b) plane is shown in Fig. 2.
The single kink is pinned below its bifurcation line and tur
1106 ©2000 The American Physical Society
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PRE 61 1107LOCALIZED STRUCTURES IN NONLINEAR LATTICES . . .
into a propagating burst wave above the line. Each nucleu
stable below its bifurcation line, which consists of tw
branches. Crossing the right or left branch upward result
the nucleation of a pair of burst waves or relaxation to
bulk state,u5u2 , respectively. The two branches interse
at a singular point, known as a cusp catastrophe@7#. We see
in Fig. 2 that the nucleation of burst waves from localiz
nuclei demonstrateshysteresis, i.e., there is a paramete
range, where a localized nucleus is stable, while a sin
front already propagates. The bifurcation lines for multis
nuclei look similar. The field value at the singular point o
each of the lines goes tò and b→0, with the number of
sites in the nucleus, due to the increasing separation of ki
Note that the hysteresis and the nucleation phenomena m
tioned above happen below the threshold driving stren
(uEu51 in Fig. 2!, at which the effective potential from Eq
~2! loses its minima.

For any stationary solution, the dynamic equation~3! re-
duces to the following tridiagonal system of algebraic eq
tions for ui ’s, the values ofu at the sitesxi ’s:

b~ui 111ui 2122ui !2sinui1E50. ~4!

FIG. 1. Successive profiles of the numerical solutionu(x) of
Eq. ~3!, starting from a one-site nucleus.~a! Nucleation of two
oppositely moving burst waves;E50.6, b50.13. ~b! Relaxation to
the bulk stateu5u2 ; E50.2, b50.17. For both cases the syste
length is L530, the number of grid points is 300, time stepdt
5231025.

FIG. 2. Numerically obtained bifurcation diagram of kink an
one- and two-site nuclei. Parameters are as in Fig. 1.
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This arises because, in the stationary regime, Eq.~3! between
the sites turns into a one-dimensional Laplace equation w
linear solutions.

We notice that the maximum value ofb on the one-site
nucleus bifurcation line in Fig. 2, is;0.25, i.e., deep in the
discrete ~small b) regime, which ends nearb;1. It is,
therefore, natural to study the stability of the nucleus, tak
b as a small parameter of the analysis.

The following three sites are the key elements of o
analysis: the site of the nucleus,i 5n, and its two neares
neighbors,i 5n61, with the corresponding field valuesun
and un61. The symmetry of the nucleus implies thatun11
5un21[u* . The neighboring sites are both equivalent
the ‘‘front site’’ on a single kink. They are most active in
sense that they are the first candidates to cross the thres
valueu0, if the stationary solution becomes unstable. It c
be shown~cf. results of Ref.@5# for a single kink! that the
field value at the other sites decays with the distance fr
the front site down tou2 , as un6k2u2;bk21 ~for k
52,3, . . . ). Consider the stability analysis to first order
b. Then only the above-mentioned three sites make a n
trivial contribution to the system stability properties, whic
leaves only two independent variables,un andu* . Using the
corresponding two equations from the system~4!, we reduce
them to one equation for the ‘‘active’’ valueu*

g~u* ![2b~u22u* !22 sinu* 13E

2sinF2u* 2u21
1

b
~sinu* 2E!G50. ~5!

The solution of Eq.~5! is represented graphically in Fig
3. The case of the right~breaking! branch of the one-site
nucleus bifurcation line~see Fig. 2! corresponds to Fig. 3~a!.
Then below the bifurcation line, the functiong(u) in Eq. ~5!
is given by the solid line, and the equation has four solutio
~open circles in the figure!. To determine the stability of

FIG. 3. Solution of Eq.~5!. ~a! E50.6, bc50.121; ~b! E
50.2, bc50.159.
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these solutions, one has to linearize system~4! and find the
eigenvalues of the obtained linear problem. We note that
maximum eigenvaluelmax is responsible for the stability o
the most active front site withu5u* . This means that nea
the bifurcation line onlylmax can change sign, whereas a
other eigenvalues remain negative. To findlmax, we linear-
ize Eq.~5! and conclude that the first and the third solutio
for u* havelmax,0, while the second and the fourth sol
tions havelmax.0. The two former solutions are, therefor
the stable nodes, and the two latter solutions are saddles
one unstable direction in the phase space.

The first solution, however, is trivial in the sense that
sites are in the bulk stateu5u2 . This leaves the single
nontrivial stable solution,unucl in Fig. 3~a!. As b increases,
the stable solution and the right saddle,u5ubr , approach
each other and eventually merge atb5bc . This occurs
when the maximum of curveg(u) in Fig. 3~a! touches the
line g50, atu5ucrit . Since, at the critical pointb5bc , the
two solutions coincide, their linear spectra become identi
and the maximum eigenvalue of the resulting spectrumlmax
equals zero, which implies the saddle-node bifurcation. F
ther increase ofb leaves the system without a stationa
solution, and the nucleus breaks, leading to the formation
a pair of oppositely moving burst waves@Fig. 1~a!#.

Stability analysis of the left~relaxation! branch of the
bifurcation line~see Fig. 2! can be made analogously, usin
Fig. 3~b!. The difference is that now the stable solutio
merges with the left~relaxation! saddle,u5urel , and the
nucleus relaxes to the bulk state@Fig. 1~b!#.

It appears that the first-order analysis is insufficient
the quantitative comparison of our theory with numeric
simulations of Eq.~3!. To improve our predictions, we hav
developed the stability analysis to second order inb. In this
case one has to consider the nucleus and two of its neigh
from each side. Symmetry of the problem reduces the n
ber of independent variables from five to three, and we d
with three corresponding equations from system~4!. We then
perform the same procedure as for the first-order stab
analysis described above. In Fig. 4 we plot the resulting
furcation line for the single-site nucleus along with the
sults of the simulations from Fig. 2. We see in Fig. 4 that o
theoretical prediction is in good quantitative agreement w
the simulations.

We now describe the physical mechanisms of the

FIG. 4. Comparison between analytical and numerical bifur
tion lines for a one-site nucleus. Parameters as in Fig. 1.
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tained phenomena of relaxation and breakup of localized
clei. In the parameter regime below the bifurcation line, t
energy functionalE, Eq. ~1!, possesses a minimum in th
functional space, which corresponds to a stable nucle
Separatrices connect this minimum to the two neighbor
unstable solutions~saddles!. If one starts with an initial con-
dition in either of these saddles slightly perturbed in the
rection of the minimum, the system evolves along the se
ratrix until it relaxes at the minimum. If one parametrizes t
position on the separatrix with an arclengths, defined as
ds25dt2*(]u/]t)2dx, the system dynamics take a simp
gradient form,ds/dt52dE(s)/ds.

In Fig. 5 we plot the dependence of energyE on s from
numerical simulations. Figure 5~a! shows E(s) near the
break-up branch of the bifurcation line. We see in the figu
that, for the stable nucleus~solid line!, the energy indeed ha
a minimum and two neighboring maxima, corresponding
the saddles of the dynamics. When the nucleus loses stab
~dashed line!, the minimum merges with the right~break-up!
saddle. Then the nucleus turns into a pair of burst waves
the energy begins monotonically decreasing. If we start w
an initial condition slightly to the right of the break-u
saddle then the system develops a pair of burst waves, e
in the stable nucleus regime. This is the manifestation of
nucleation hysteresis effect, since the bound nucleus is
stable in the parameter range for which a well-separa
front already bursts and propagates. If, on the other hand
start to the left of the relaxation saddle, then the system
relax to the homogeneous bulk stateu5u2 for both stable
and unstable nuclei.

-

FIG. 5. EnergyE vs arclengths near ~a! break-up branch (E
50.6) and~b! relaxation branch (E50.2) of the bifurcation line of
a one-site nucleus.
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PRE 61 1109LOCALIZED STRUCTURES IN NONLINEAR LATTICES . . .
The system behavior near the relaxation branch of
bifurcation line is different, see Fig. 5~b!. As b crosses the
critical value, the minimum of the functional merges with t
left ~relaxation! saddle, and the system relaxes to the hom
geneous bulk state. The same thing happens if we start to
left of this saddle, for the regime of parameters where
nucleus is stable. However, if we start slightly to the right
the break-up saddle, then the nucleus at first starts brea
but then relaxes to the three-site nucleus, rather than de
oping into a pair of separated burst waves.

In conclusion, we have demonstrated that nonlinear
tices with diffusive coupling possess localized structures
certain parameter regimes. We have shown that these s
tures can be destroyed in two alternative scenarios:~i!
break-up into a pair of oppositely propagating burst wav
and ~ii ! relaxation to a homogeneous state. We have fo
hysteresis in the burst-wave nucleation from a localized e
bryo, appearing as the difference between the stab
thresholds of nucleus breakup and burst-wave propaga
s.
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We have given a theoretical description of these phenom
in terms of the energy functional of our system. The pred
tions of our theory are in a good quantitative agreement w
numerical simulations of the full system. Our interesting
rections for future research: the influence of the localiz
structures on thermal nucleation@6#, dynamics of localized
structures in corresponding two- and three-dimensional s
tems, experimental studies of stable and unstable nucle
materials, etc. We note that, though we have studied latt
with continuous coupling, the stability analysis has been p
formed for stationary localized structures from Eq.~4!.
Therefore, the obtained stability properties of these str
tures should remain intact for completely discrete syste
such as arrays of Josephson junctions@2# or lattices of non-
linear oscillators@4#.

We appreciate fruitful discussions with D. K. Campbe
and J. E. Pearson. This research is supported by the De
ment of Energy under Contract No. W-7405-ENG-36.
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